Systematic angle-resolved photoemission study of Ce-based heavy-fermion systems

H. J. Im,¹ H. Miyazaki,² T. Ito,³ S. Kimura,^{2,4} K. E. Lee,⁵ Y. S. Kwon,⁵ A. Yasui,⁶ and H. Yamagami^{6,7}

¹ Department of Advanced Physics, Hirosaki Universsy, Hirosaki 036-8561, Japan

² UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan

³ Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

⁴ School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan

⁵ Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

⁶ Synchrotron Radiation Research Center, Japan Atomic Energy Agency, SPring-8, Sayo,

Hyogo 679-5148, Japan

⁷ Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan

We present the systematic angle-resolved photoemission (ARPES) studies of Ce-based heavy fer-mion compounds, CeNi_{1-x}Co_xGe₂, whose ground states are change from antiferromagnetic to non-magnetic heavy fermion via quantum critical point (QCP). Recently, it was clearly observed that the Kondo resonance (KR) peaks (Ce $4f^1$ state) are dispersed from above the Fermi-level $(E_{\rm F})$ and cross $E_{\rm F}$ forming the diamond-shaped Fermi-surface (FS) in non-magnetic heavy-fermion system, CeCoGe_{0.8}Si_{1.2} [1]. The systematic Ce 4d-4f resonant ARPES studies CeNi_{1-x}Co_xGe₂ reveal of that such momentum-dependence of KR peaks exists across QCP, indicating the itinerant character of *f*-electrons in agreement with the results of angle-integrated photoelectron spectroscopy [2].

References:

- [1] H. J. Im et al., Phys. Rev. Lett. 100, 176402 (2008).
- [2] H. J. Im et al., Phys. Rev. B 72, 220405 (2005).